MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.


OS PONTOS DE TRANSFORMAÇÕES E POTENCIAIS DAS ESTRUTURAS TAMBÉM SÃO DIMENSÕES DE GRCELI.




   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.




A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.





 ψψ     [ / ]   /[

][   ) [ ]

,] / [    ]     .




ψ     [  / [ [ []  ] ]    .




   / ]]   ) [[ ][

]ψ] ]  .



 ψ   / [ [ ] [

]   ] ] 
ψ] /    .



ψ  /     / []]  []

  ) [[ ]]ψ] .   . 





* []ψ         [ [ ] [

 ψ]   .





 ψ  []      [ [ ][

ψ]]   .




ψ      [] / [ [ ] [] ]    .






ψ   / [ ] [ ]]

]ψ] /     .




*  [ [ ]]

ψ[
] / ] ]] .








    [[ ]]/]

] [
]ψ [] .





ψ [[ ]]

 []ψ]/ ]  .










  / [ [ ]]]  ψ ]  .




ψ      [  [ ] 

][   ψ ] / ]    .






ψ     []

   ]] /      [[ ]]     .






ψ  [[ ]]  ) [

ψ []










ψ     [ [[ ]]

  )[] /  ψ     .





   [[ ]] /   )[

, ] / ψ   .


 termodinâmica quântica é o estudo das relações entre duas teorias físicas independentes: termodinâmica e mecânica quântica.[1][2] As duas teorias independentes tratam dos fenômenos físicos da luz e da matéria. Em 1905, Einstein argumentou que a exigência de consistência entre termodinâmica e eletromagnetismo[3] nos leva à conclusão de que a luz é quantizada obtendo a relação . Este artigo é o início da teoria quântica. Em algumas décadas, a teoria quântica se estabeleceu com um conjunto independente de regras.[4] Atualmente, a termodinâmica quântica trata do surgimento de leis termodinâmicas da mecânica quântica. Ela difere da mecânica estatística quântica na ênfase em processos dinâmicos fora de equilíbrio.[5] Além disso, há uma busca pela teoria para ser relevante para um único sistema quântico individual.[6]

Visualização dinâmica

Existe uma conexão íntima da termodinâmica quântica com a teoria dos sistemas quânticos abertos.[7] A mecânica quântica insere dinâmica na termodinâmica, dando uma base sólida à termodinâmica para tempo finito. A principal premissa é que o mundo inteiro é um grande sistema fechado e, portanto, a evolução do tempo é governada por uma transformação unitária gerada por um hamiltoniano global. Para o cenário combinado do banho do sistema, o Hamiltoniano global pode ser decomposto em:

onde  é o sistema hamiltoniano,  é o banho hamiltoniano e é a interação sistema-banho. O estado do sistema é obtido a partir de um rastreamento parcial sobre o sistema combinado e o banho: . Dinâmica reduzida é uma descrição equivalente da dinâmica do sistema, utilizando apenas operadores do sistema. Assumindo a propriedade de Markov para a dinâmica, a equação básica de movimento para um sistema quântico aberto é a equação de Lindblad (GKLS):[8][9]

 é uma parte hamiltoniana (Hermitiana) e :

é a parte dissipativa que descreve implicitamente através dos operadores do sistema  a influência do banho no sistema. A propriedade de Markov impõe que o sistema e o banho não estejam correlacionados o tempo todo . A equação L-GKS é unidirecional e conduz qualquer estado inicial  para uma solução em estado estacionário que é invariável da equação do movimento .[7]

imagem de Heisenberg fornece uma ligação direta para observáveis termodinâmicos quânticos. A dinâmica de um sistema observável representado pelo operador, , tem a forma:

onde a possibilidade de que o operador,  é explicitamente dependente do tempo, está incluído.

Comentários

Postagens mais visitadas deste blog